

St George's School Further Mathematics KS5 Curriculum

PREREQUISITE KNOWLEDGE & SKILLS The foundations needed to thrive in this subject.	 Who should study this subject? Students who are studying A Level Mathematics who have a real flair and passion for the subject and wish to study it in greater breadth and depth. Studying Further Mathematics is particularly beneficial for those who wish to read Mathematics and/or Engineering at university. Key Skills developed during KS4: As per A Level Mathematics St George's course entry requirements: In addition to the entry requirement for sixth form, a grade 7 or above in Mathematics. Please note that Mathematics and Further Mathematics can only be taken together with 2 other A Level courses.
QUALIFICATION <i>Exam Board,</i> <i>aims and</i> <i>objectives.</i>	A Level Further Mathematics Edexcel <u>https://qualifications.pearson.com/content/dam/pdf/A%20Level/Mathematics/2017/specification-and-s</u> <u>ample-assesment/a-level-I3-further-mathematics-specification.pdf</u>
ASSESSMENT Internal monitoring and final assessment.	 Internal Assessment: Internal checkpoints are taken at regular intervals, 2 or 3 topics at a time. January Year 13: Mock examinations Final assessment: 4 x 90 minute examinations taken at the end of the course: Mandatory Core Pure (50%): Core Pure 1 & Core Pure 2 Two Options (25% each): Decision Mathematics, Mechanics or Statistics Students will begin Year 13 studying all three options in order to best ensure the correct two are selected for further study. This decision will be made sometime in the Autumn Term.
ENRICHMENT <i>Trips & Visits,</i> <i>wider reading,</i> <i>etc.</i>	 Visits and Events: Senior Maths Challenge Maths Team Challenge University of Hertfordshire Problem Solving Workshops Mathsfest Wider reading: Books by Marcus du Sautoy, Rob Eastaway, Hannah Fry, Simon Singh and Ian Stewart Podcasts including More or Less, Infinite Monkey Cage, Curious Cases of Rutherford and Fry There are various websites which are useful for wider reading: http://www.cut-the-rope.org/ http://plus.maths.org/content/
NEXT STEPS Where this subject can take you.	Related University Courses: As per A Level Mathematics. In addition, students following degree courses in Mathematics and/or Engineering would find Further Mathematics particularly useful. Career Paths: As per A Level Mathematics.

Students complete the A Level Mathematics course in one year, gaining the qualification at the end of Year 12. Please see A Level Mathematics for course content. Students then start the Further Mathematics course at the end of Year 12.

	Year 12
Autumn Term	Students will follow the Year 12 Mathematics course
Spring Term	Students will follow the Year 13 Mathematics course
Summer Term	Topics: Core Pure Complex numbers, Argand diagrams, Roots of polynomials, Series, Volumes of revolution, Matrices, Linear transformations. Skills: Understand and use the definitions of imaginary and complex numbers Add and subtract complex numbers Multiply complex numbers Understand the definition of a complex conjugate Divide complex numbers Solve cubic or quartic equations that have complex roots Solve cubic or quartic equations that have complex roots Solve cubic or quartic equations that have complex nots Show complex numbers in modulus-argument of a complex number Write a complex number in modulus-argument form Represent regions on an Argand diagram Perive and use the relationships between the roots of a quadratic equation Derive and use the relationships between the roots of a quadratic equation Derive and use the relationships between the roots of a quartic equation Evaluate expressions relating to the roots of polynomials Find the equation of a polynomial whose roots are a linear transformation of the roots of a given polynomial Use standard results for $\sum_{r=n}^{n} r^{2}$ and $\sum_{r=1}^{n} r^{3}$ Use standard results for $\sum_{r=1}^{n} r^{2}$ and $\sum_{r=1}^{n} r^{3}$ Find the volume of revolution when a curve is rotated around the x axis
	Use matrices to solve systems of equations Interpret simultaneous equations geometrically Understand the properties of linear transformations and represent them using matrices Perform reflections and rotations using matrices Carry out enlargements and stretches using matrices

Find the coordinates of invariant points and the equations of invariant lines Carry out successive transformations using matrix products Understand linear transformations in 3 dimensions Use inverse matrices to reverse linear transformations
Assessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time

	Year 13
Autumn Term	Topics: Core Pure Proof by induction, vectors, Complex numbers, Methods in calculus, Series, Volumes of revolution, Methods in differential equations.
	Decision (if taken as an option) Algorithms, Graphs and networks, Algorithms on graphs, Route inspection, The travelling salesman problem
	Mechanics (if taken as an option) Momentum and impulse, Work, energy and power, Elastic strings and springs
	Statistics (if taken as an option) Discrete random variables, Poisson distributions, Geometric and negative binomial distributions, Hypothesis testing, Central limit theorem
	Skills: Core Pure Understand the principle of proof by induction and prove results about sums of series Prove results about divisibility using induction Prove results about matrices using induction Understand and use the vector and Cartesian forms of the equation of a straight line in three dimensions
	Understand and use the vector and Cartesian forms of the equation of a plane Calculate the scalar product for two 3D vectors Calculate the angle between two vectors, two lines, a line and a plane, or two planes Understand and use the scalar product form of the equation of a plane
	Determine whether two lines meet and determine the point of intersection Calculate the perpendicular distance between: two line, a point and a line, or a point and a plane Express a complex number in exponential form Multiply and divide complex numbers in exponential form Understand de Moivre's theorem
	Use de Moivre's theorem to derive trigonometric identities Use de Moivre's theorem to find sums of series Know how to solve completely equations of the form $z^n - a - ib = 0$, giving special attention to cases where $a = 1$ and $b = 0$
	Use complex roots of unity to solve geometric problems Evaluate improper integrals Understand and evaluate the mean value of a function Integrate rational functions using trigonometric substitutions
	Integrate using partial fractions Understand and use the method of differences to sum finite series Find and use higher derivatives of functions Know how to express functions as an infinite series in ascending powers using Maclaurin series expansion
	Be able to find the series expansions of compound functions Find volumes of revolution around the x-axis

Find volumes of revolution around the y-axis Find the volumes of revolution for curves defined parametrically Model real-life applications of volumes of revolution Solve first-order differential equations using an integrating factor Solve second-order homogeneous differential equations using the auxiliary equation Solve second-order non-homogeneous differential equations using the complimentary function and the particular integral Find particular solutions to differential equations using given boundary conditions Decision (if taken as an option) Use and understand an algorithm given in words Understand how flow charts can be used to describe algorithms Carry out a bubble sort Carry out a quick sort Carry out the three bin-packing algorithms and understand their strengths and weaknesses Determine the order of an algorithm Know how graphs and networks can be used to create mathematical models Be familiar with basic terminology used in graph theory Know some special types of graph Understand how graphs and networks can be represented using matrices Use the planarity algorithm to determine whether or not a given graph is planar Use Kruskal's algorithm to find a minimum spanning tree Use Prim's algorithm on a network to find a minimum spanning tree Apply Prim's algorithm to a distance matrix Use Dijkstra's algorithm to find the shortest path between two vertices in a network Use Floyd's algorithm Use the orders of nodes to determine whether a graph is Eulerian, semi-Eulerian or neither Use the route inspection (Chinese postman) algorithm to find the shortest route in a network Use the route inspection algorithm in networks with more than four odd nodes Explain the differences between the classical and practical problems Use a minimum spanning tree method to find an upper bound Use a minimum spanning tree method to find a lower bound Use the nearest neighbour algorithm to find an upper bound Mechanics (if taken as an option) Calculate the momentum of a particle and the impulse of a force Solve problems involving collisions using the principles of conservation of momentum Use the impulse-momentum principle and the principle of conservation of momentum in vector form Calculate the work done by a force when its point of application moves

Calculate the kinetic energy of a moving particle and the potential energy of a particle

Use the principle of conservation of mechanical energy and the work-energy principle Calculate the power developed by an engine

Use Hooke's law to solve equilibrium problems involving elastic strings or springs

Use Hooke's law to solve dynamics problems involving elastic strings or springs

Find the energy stored in an elastic string or spring

Solve problems involving elastic energy using the principle of conservation of mechanical energy and the work-energy principle

Statistics (if taken as an option)

Find the expected value of a discrete random variable X

Find the expected value of X^2 Find the variance of a discrete random variable Use the expected value and variance of a function of XSolve problems involving random variables Use the Poisson distribution to model real-world situations Use the additive property of the Poisson distribution Understand and use the mean and variance of the Poisson distribution Understand and use the mean and variance of the binomial distribution Use the Poisson distribution as an approximation to the binomial distribution Understand and use the geometric distribution Calculate and use the mean and variance of the geometric distribution Understand and use the mean and variance of the geometric distribution Calculate and use the mean and variance of the geometric distribution Calculate and use the mean and variance of the negative binomial distribution

	Use hypothesis tests to test for the mean λ of a Poisson distribution Find critical regions of a Poisson distribution using tables Use hypothesis tests to test for the parameter <i>p</i> in a geometric distribution Find critical regions of a geometrical distribution Understand and apply the central limit theorem to approximate the sample mean of a random variable, <i>X</i> Apply the central limit theorem to other distributions Assessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time
Spring	Topics:
Term	Core Pure Polar coordinates, Hyperbolic functions, Modelling with differential equations Decision (if taken as an option) Linear programming, The simplex algorithm, Critical path analysis Mechanics (if taken as an option) Elastic collisions in one dimension, Elastic collisions in two dimensions Statistics (if taken as an option) Chi-squared tests, Probability generating functions, Quality of tests Skills: Convert between polar and Cartesian coordinates Convert between polar and Cartesian coordinates Sketch curves with r given as a function of 0 Find the area enclosed by a polar curve Find the area enclosed by a polar curve Find the area definitions of hyperbolic functions Understand the definitions of hyperbolic functions Necken the graphs of hyperbolic functions Understand the definitions of hyperbolic functions Nodel real-life situations with first-order differential equations Understand and use the inverse hyperbolic functions Model damped and forced oscillations using differential equations Use differential equations to model simple harmonic motion Model real-life situations using coupled first-order differential equations Model real-life situations using coupled first-order differential equations

Understand and use slack and surplus variables Solve maximising and minimising linear programming problems requiring integer solutions Understand and use the two-stage simplex method for maximising and minimising problems which may include ≤ and ≥ constraints Understand and use the big-M method for maximising and minimising problems which may include ≤ and ≥ constraints Understand and use the big-M method for maximising and minimising problems which may include ≤ and ≥ constraints Understand and use the big-M method for maximising and minimising problems which may include ≤ and ≥ constraints Understand and use the big-M method for maximising and minimising problems which may include ≤ and ≥ constraints Understand and use the total float of an activity Calculate the total float of an activity Calculate the total float of an activity Calculate and use Ganth (cascade) charts Construct resource histograms Construct resource histograms Construct scheduling diagrams Mechanics (ff taken as an option) Solve problems involving the oblique impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution Solve problems involving the oblique impact of a smooth sphere Solve problems involving the oblique impact of two smooth sphere Solve problems involving the oblique impact of a sphe		
Use the simplex tableau method to solve linear programming problems requiring integer solutions. Understand and use the Big-M method for maximising and minimising problems which may include ≤ and ≥ constraints Understand and use the Big-M method for maximising and minimising problems which may include ≤ and ≥ constraints Model a project by an activity network using precedence table Use dummy activities Identify and calculate early and late event times in activity networks Identify and calculate early and late event times in activity networks Construct resource histograms Construct scheduling diggrams Mechanics (if taken as an option) Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surface Solve problems involving the oblique impact of two smoth spheres Solve problems involving the use oblique impact of two smoth spheres Solve problems involving the use of to solve oblique impact of two smoth spheres Solve problems involving the use of to solve or data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables <th></th> <th>Understand and use slack and surplus variables</th>		Understand and use slack and surplus variables
Understand and use the two-stage simplex method for maximising and minimising problems which may include ≤ and ≥ constraints. Understand and use the Big-M method for maximising and minimising problems which may include ≤ and ≥ constraints. Model a project by an activity network using precedence table Use dummy activities Identify and calculate early and late event times in activity networks Identify and calculate early and late event times in activity networks Calculate the total float of an activity Calculate the total float of an activity Calculate and use Gartt (cascade) charts Construct resource histograms Construct resource histograms Construct scheduling diagrams Mechanics (if taken as an option) Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution Apply Newton's law of restitution Solve problems involving the oblique impact of two particles by using the principle of conservation of momentum and Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surface Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of a smooth sphere with a fixed surface<		
Include ≤ and ≥ constraints Understand and use the Big-M method for maximising and minimising problems which may include ≤ and ≥ constraints Model a project by an activity network using precedence table Use dummy activities Identify and calculate early and late event times in activity networks Identify and calculate early and late event times in activity networks Calculate the total float of an activity Calculate the total float of an activity Calculate and use Gamt (cascade) charts Construct resource histograms Construct scheduling diagrams Mechanics (if taken as an option) Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution Apply Newton's law of restitution Apply Newton's law of restitution Solve problems involving the dilique impact of two smoth spheres Solve problems involving the dilique impact of two smoth spheres Solve problems involving the dilique impact of two smoth spheres Solve problems involving the dilique impact of two smoth spheres Solve problems involving the dilique impact of two smoth spheres Solve problems involving the dilique impact of two smoth spheres Solve problems involving the dilique impact of tw		
Understand and use the Big-M method for maximising and minimising problems which may include ≤ and ≥ constraints Model a project by an activity network using precedence table Use dummy activities Identify and calculate early and late event times in activity networks Identify and calculate tearly and late event times in activity networks Identify and calculate tearly and late event times in activity networks Calculate the total float of an activity Calculate the stering functions to restification		
constraints Model a project by an activity network using precedence table Use dummy activities Identify and calculate early and late event times in activity networks identify critical activities Calculate the total float of an activity Calculate the total float of an activity Calculate the total float of an activity Calculate the total float of an activity Calculate the total float of an activity Calculate the total float of an activity Calculate the total float of an activity Calculate the total float of an activity Calculate the total float of an activity Calculate the total float of an activity Calculate the total float of an activity Construct scheduling diagrams Construct scheduling diagrams Mechanics (if taken as an option) Solve problems involving the direct impacts Solve problems involving the oblique impact of two particles by using the principle of conservation of momentum and Newton's law of restitution to problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth sphere Solve problems involving the oblique impact of a smooth sphere with smooth plane surfaces Statistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit		
Model a project by an activity network using precedence table Use dummy activities Identify and cladulate early and late event times in activity networks Identify and cladulate for an activity Calculate the total float of an activity Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newtor's law of restitution float of two smooth spheres Solve problems involving successive oblique impact of two smooth spheres Solve problems involving accessive data Understand degrees of fre		
Use dummy activities Identify and calculate early and late event times in activity networks Identify and calculate early and late event times in activity networks Identify critical activities Calculate the total float of an activity Calculate and use Gant (cascade) charts Construct resource histograms Construct scheduling diagrams Construct scheduling diagrams Construct scheduling diagrams Vechanics (if taken as an option) Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surface Find the change in energy due to an impact or the application of an impulse Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of two smooth sphere with smooth plane surfaces Satistics (if taken as an option) From hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure gootness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (x²) family of distributions Understand degrees of fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Understand use of probability generating functions of the sum of independent random variables Know the probability generating functions for standard distribution		
Identify and calculate early and late event times in activity networks Identify critical activities Calculate the total float of an activity Calculate and use Gantt (cascade) charts Construct resource histograms Construct scheduling diagrams Mechanics (if taken as an option) Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surface Solve problems involving the oblique impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution to problems involving the direct collision of an impulse Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving successive oblique impact of a shere with smooth plane surfaces Statistics (if taken as an option) Form hypotheses about how well ad distribution fits as a model for an observ		
Identify critical activities Calculate the total float of an activity Calculate and use Gantt (cascade) charts Construct resource histograms Construct scheduling diagrams Mechanics (if taken as an option) Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surface Find the change in energy due to an impact or the application of an impulse Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of a sphore with a fixed surface Solve problems involving the oblique impact of a sphore with a fixed surface Solve problems involving the oblique impact of two smooth spheres Solve problems involving successive oblique impacts of a sphere with smooth plane surfaces Statistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit ests to discrete data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions of the sum of independent random variables Know aboutT		•
Calculate the total float of an activity Calculate and use Ganti (cascade) charts Construct resource histograms Construct scheduling diagrams Mechanics (if taken as an option) Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution Apply Newton's law of restitution Solve problems involving two of restitutions Solve problems involving successive direct impacts Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of a smooth spheres Solve problems involving the oblique impact of a smooth spheres Solve problems involving uccessive oblique impacts of a sphere with a fixed surface Statistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to discrete data Use probability generating functions for standard distributions Use probability genera		
Calculate and use Gantt (cascade) charts Construct secource histograms Construct scheduling diagrams Mechanics (if taken as an option) Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surface Find the change in energy due to an impact or the application of an impulse Solve problems involving successive direct impacts Solve problems involving the oblique impact of two smooth spheres Solve problems involving successive oblique impacts of a sphere with smooth plane surfaces Statistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to geometric distributions Use probability generating functions to find the mean and variance of a distribution Know about Type I and Type I errors using the normal distribution Construct step Postability generating function for a test Apply goodness-of-fit tests Neg constanded step and power of a test Draw a graph of		•
Construct resource histograms Construct scheduling diagramsMechanics (if taken as an option) Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surface Find the change in energy due to an impact or the application of an impulse Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of a sphere with smooth plane surfacesStatistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to geometric distributions Use probability generating functions for standard distributions Chardware back about fype I and Type I errors Find Type I and Type I lerrors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a testSummerXerk will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare <th></th> <th>·</th>		·
Construct scheduling diagramsMechanics (if taken as an option)Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitutionApply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surfaceFind the change in energy due to an impact or the application of an impulse Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of a sphere with smooth plane surfacesStatistics (if taken as an option)Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tablesUse probability generating functions to find the mean and variance of a distribution Know the probability generating functions to find the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a testInderstand the use of power function for a testAssessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and		
Mechanics (if taken as an option) Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surface Find the change in energy due to an impact or the application of an impulse Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of a smooth spheres Solve problems involving the oblique impact of a smooth spheres Solve problems involving successive oblique impacts of a sphere with smooth plane surfaces Statistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions to find the mean and variance of a distribution Know about Type I and Type II errors Find Type I and Type II errors Find Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the isze and power of a test Draw a graph of the power func		÷
Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surfaceFind the change in energy due to an impact or the application of an impulse Solve problems involving successive direct impacts Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use probability generating functions for standard distributions Understand the use of probability generating functions Use probability generating functions of find the mean and variance of a distribution Know whout Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a testAssessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		Construct scheduling diagrams
Solve problems involving the direct impact of two particles by using the principle of conservation of momentum and Newton's law of restitution Apply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surfaceFind the change in energy due to an impact or the application of an impulse Solve problems involving successive direct impacts Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the oblique impact of two smooth spheres Solve problems involving the distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use probability generating functions for standard distributions Understand the use of probability generating functions Use probability generating functions of find the mean and variance of a distribution Know whout Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a testAssessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		Mechanics (if taken as an ontion)
momentum and Newton's law of restitution Apply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surface Find the change in energy due to an impact or the application of an impulse Solve problems involving successive direct impacts Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of two smooth spheres Solve problems involving successive oblique impacts of a sphere with smooth plane surfaces Statistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure gootness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions to find the mean and variance of a distribution Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a test Assessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 to		\cdot
Apply Newton's law of restitution to problems involving the direct collision of a particle with a smooth plane surfaceFind the change in energy due to an impact or the application of an impulse Solve problems involving successive direct impactsSolve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of two smooth spheres Solve problems involving successive oblique impacts of a sphere with smooth plane surfacesStatistics (if taken as an option)Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions for standard distributions Use probability generating functions to find the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a testDraw a graph of the power function for a testMork will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummer		
surface Find the change in energy due to an impact or the application of an impulse Solve problems involving successive direct impacts Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of two smooth spheres Solve problems involving successive oblique impacts of a sphere with a fixed surface Solve problems involving successive oblique impacts of a sphere with smooth plane surfaces Statistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions for the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a test Mork will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations		
Find the change in energy due to an impact or the application of an impulse Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of two smooth spheres Solve problems involving successive oblique impacts of a sphere with smooth plane surfacesStatistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Use probability generating functions Use probability generating functions to find the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a testMork will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations		
Solve problems involving successive direct impacts Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving successive oblique impacts of a sphere with smooth plane surfaces Statistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions to find the mean and variance of a distribution Know about Type I and Type II errors Find Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a test Assessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations		
Solve problems involving the oblique impact of a smooth sphere with a fixed surface Solve problems involving the oblique impact of two smooth spheres Solve problems involving successive oblique impacts of a sphere with smooth plane surfacesStatistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to geometric distributions Use probability generating functions to find the mean and variance of a distribution Know the probability generating functions of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a testAssessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mcck examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Solve problems involving the oblique impact of two smooth spheres Solve problems involving successive oblique impacts of a sphere with smooth plane surfacesStatistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ ²) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions to find the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a testAssessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mcck examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Solve problems involving successive oblique impacts of a sphere with smooth plane surfacesStatistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ²) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions to find the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a testWork will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Statistics (if taken as an option) Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions to find the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a test Vork will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations		
 Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (x²) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions to find the mean and variance of a distribution Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a test Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations 		Solve problems involving successive oblique impacts of a sphere with smooth plane surfaces
 Form hypotheses about how well a distribution fits as a model for an observed frequency distribution and measure goodness of fit of a model to observed data Understand degrees of freedom and use the chi-squared (x²) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions to find the mean and variance of a distribution Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a test Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations 		Statistics (if taken as an option)
measure goodness of fit of a model to observed dataUnderstand degrees of freedom and use the chi-squared (χ^2) family of distributionsBe able to test a hypothesisApply goodness-of-fit tests to discrete dataUse contingency tablesApply goodness-of-fit tests to geometric distributionsUnderstand the use of probability generating functionsUse probability generating functions for standard distributionsUse probability generating functions to find the mean and variance of a distributionKnow the probability generating function of the sum of independent random variablesKnow about Type I and Type II errorsFind Type I and Type II errors using the normal distributionCalculate the size and power of a testDraw a graph of the power function for a testWork will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Understand degrees of freedom and use the chi-squared (χ^2) family of distributions Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions of the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a testAssessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Be able to test a hypothesis Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions to find the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a testSummerMork will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations		
Apply goodness-of-fit tests to discrete data Use contingency tables Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions to find the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a testSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Use contingency tablesApply goodness-of-fit tests to geometric distributionsUnderstand the use of probability generating functionsUse probability generating functions for standard distributionsUse probability generating functions to find the mean and variance of a distributionKnow the probability generating function of the sum of independent random variablesKnow about Type I and Type II errorsFind Type I and Type II errors using the normal distributionCalculate the size and power of a testDraw a graph of the power function for a testWork will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Apply goodness-of-fit tests to geometric distributions Understand the use of probability generating functions Use probability generating functions for standard distributions Use probability generating functions to find the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a testAssessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Understand the use of probability generating functionsUse probability generating functions for standard distributionsUse probability generating functions to find the mean and variance of a distributionKnow the probability generating function of the sum of independent random variablesKnow about Type I and Type II errorsFind Type I and Type II errors using the normal distributionCalculate the size and power of a testDraw a graph of the power function for a testWork will be submitted regularly to assess understandingCheckpoints are taken at regular intervals, 2 or 3 topics at a timeJanuary: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		• ,
Use probability generating functions for standard distributions Use probability generating functions to find the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a testAssessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Use probability generating functions to find the mean and variance of a distribution Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a test Assessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
 Know the probability generating function of the sum of independent random variables Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a test Assessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare 		
Know about Type I and Type II errors Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a testAssessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
 Find Type I and Type II errors using the normal distribution Calculate the size and power of a test Draw a graph of the power function for a test Assessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare 		
Calculate the size and power of a test Draw a graph of the power function for a testAssessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinationsSummerThe summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Draw a graph of the power function for a test Assessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Assessment: Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations Summer The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations Summer The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Work will be submitted regularly to assess understanding Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations Summer The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations Summer The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		Assessment:
Checkpoints are taken at regular intervals, 2 or 3 topics at a time January: Mock examinations Summer The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		Work will be submitted regularly to assess understanding
Summer The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
Summer The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare		
	Summer	The summer term is used to consolidate all the knowledge and skills acquired in the course and prepare
	Term	students for the final examinations.